Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1)

Guangzhe Li, Chris Salim and Hirofumi Hinode*

Department of International Development Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Correspondence e-mail: HirofumiHinode@yahoo.com

Received 2 September 2008; accepted 14 October 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.147; data-to-parameter ratio = 18.4.

The hydrothermal reaction of $Cd(NO_3)_2 \cdot 4H_2O$, 1,3-di-4pyridylpropane (BPP) and 4,4'-oxydibenzoic acid (OBA) led to the formation of the title compound, $C_{13}H_{14}N_2 \cdot C_{14}H_{10}O_5$. The asymmetric unit consists of one molecule of OBA and one of BPP. In the OBA molecule, one COOH group is nearly planar with its attached benzene ring [dihedral angle = 0.9 (1)°], while the other COOH group is slightly twisted with a dihedral angle of 10.8 (3)°. The carboxyl groups form strong intermolecular $O-H \cdots N$ hydrogen bonds with N atoms of the pyridine rings in BPP, linking the molecules into zigzag chains.

Related literature

For general background see: Belcher *et al.* (2002); Hagrman *et al.* (1999); Han *et al.* (2007); Luan *et al.* (2005); Nguyen *et al.* (2006); Wang *et al.* (2005); Yaghi *et al.* (1998). For related structures, see: Dai *et al.* (2005); Ma *et al.* (2006); Hou *et al.* (2008); Lee *et al.* (2003); Wang *et al.* (2008); Najafpour *et al.* (2008). For an idependent determination of this structure, see: Dong *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{14}N_2 \cdot C_{14}H_{10}O_5 \\ M_r = 456.48 \\ \text{Triclinic, } P\overline{1} \\ a = 6.8938 \ \text{(3) Å} \\ b = 11.5869 \ \text{(6) Å} \end{array}$

c = 14.9570 (9) Å $\alpha = 86.493 (4)^{\circ}$ $\beta = 81.157 (4)^{\circ}$ $\gamma = 74.016 (3)^{\circ}$ $V = 1134.67 (10) \text{ Å}^{3}$

```
Z = 2
Mo K\alpha radiation
\mu = 0.09 \text{ mm}^{-1}
```

Data collection

Bruker SMART CCD area-detector	8404 measured reflections
diffractometer	5645 independent reflections
Absorption correction: multi-scan	2932 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2002)	$R_{\rm int} = 0.022$
$T_{\rm min} = 0.957, T_{\rm max} = 0.962$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 307 parameters $wR(F^2) = 0.147$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.19$ e Å $^{-3}$ 5645 reflections $\Delta \rho_{min} = -0.28$ e Å $^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} D3 - H3 \cdots N1^{i} \\ D5 - H5 \cdots N2^{ii} \end{array}$	0.82	1.78	2.598 (2)	174
	0.82	1.87	2.685 (2)	177

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y - 1, z - 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXS97*; software used to prepare material for publication: *SHELXL97*.

The authors thank Tokyo Institute of Technology and MEXT for the financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2221).

References

- Belcher, W. J., Longstaff, C. A., Neckenig, M. R. & Steed, J. W. (2002). Chem. Commun. pp. 1602–1603.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, 03410–03411.Dong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, 02252.
- Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.
- Han, L., Valle, H. & Bu, X. H. (2007). Inorg. Chem. 46, 1511-1513.
- Hou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, 0997.
- Lee, T. W., Lau, J. P. K. & Szeto, L. (2003). Acta Cryst. E59, 0792-0793.
- Luan, X. J., Wang, Y. Y., Li, D. S., Liu, P., Hu, H. M., Shi, Q. Z. & Peng, S. M. (2005). Angew. Chem. Int. Ed. 44, 3864–3867.
- Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). *Acta Cryst.* E62, o1165–o1166.
- Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, 0985.
- Nguyen, D. T., Chew, E., Zhang, Q. C., Choi, A. & Bu, X. H. (2006). *Inorg. Chem.* 45, 10722–10727.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, 01442.
- Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Su, Z. M. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824–5827.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.

T = 298 (2) K

 $0.47 \times 0.45 \times 0.45$ mm

Acta Cryst. (2008). E64, o2251 [doi:10.1107/S160053680803331X]

1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1)

G. Li, C. Salim and H. Hinode

Comment

Over the past decades, the rational design and synthesis of metal-organic frameworks have received extensive attention in the fields of supramolecular chemistry and crystal engineering (Hagrman *et al.*, 1999; Yaghi *et al.*, 1998). These materials exhibit interesting functions such as catalysis, biology, electrical conductivity, magnetism and photochemistry. In the past five years, there has been a growing interest in metal-organic frameworks based on 1,3-di-4-pyridylpropane and 4,4'-oxydibenzoic acid ligands (Wang *et al.*, 2005; Luan *et al.*, 2005; Belcher *et al.*, 2002; Han *et al.*, 2007; Nguyen *et al.*, 2006). Recently, we have focused on preparing metal-organic frameworks containing such organic ligands and metal ions. During the process, a new cocrystal of 1,3-di-4-pyridylpropane and 4,4'-oxydibenzoic acid was obtained which assembled by H-bondin and we report its synthesis and crystal structure here. The structures of some similar molecular materials have been reported (Dai *et al.*, 2005; Lee *et al.*, 2003; Ma *et al.*, 2006; Wang *et al.*, 2008; Hou *et al.*, 2008; Najafpour *et al.*, 2008). An independent study of (I) has also been published (Dong *et al.*, 2008).

As shown in Fig. 1, the asymmetric unit contains one 1,3-di-4-pyridylpropane molecule and one 4,4'-oxydibenzoic acid molecule. The bond lengths and angles are within normal ranges. In 4,4'-oxydibenzoic acid molecule, one COOH group (C7/O2/O3) is nearly planar with one benzene ring (C1/C2/C3/C4/C5/C6, dihedral angle of 0.9 °), while another COOH group (C14/O4/O5) has a dihedral angle of 10.8 ° with another benzene ring (C8/C9/C10/C11/C12/C13). The dihedral angle between two benzene ring of a 4,4'-oxydibenzoic acid molecule is 57.0 °. In 1,3-di-4-pyridylpropane molecule, the dihedral angle between two pyridyl rings is 26.9 °. The carboxylic acid groups form strong intermolecular O—H···N hydrogen bonds (Table 1) with N atoms of the pyriding rings, linking the molecules into one-dimensional zigzag chains (Fig.2). Intermolecular C—H···O hydrogen bonds may be effective in the stabilization of the crystal structure.

Experimental

In a typical synthesis for the title compound, a mixture of $Cd(NO_3)_2.4H_2O$ 120 mg, 4,4'-oxydibenzoic acid 52 mg, 1,3bis(4-pyridyl)propane 20 mg, HCl (38%) 0.1 ml, NH₃.H₂O 0.08 ml, *N*,*N*-dimethylformamide (DMF) 3.0 ml and H₂O 6.0 ml were sealed in a 15 ml Teflon-lined stainless steel autoclave and heated under autogenous pressure for five days at 393 K. After slow cooling to room temperature, the block-shaped colourless crystalline product was filtered, washed with distilled water, and dried at ambient temperature. The crystal used for data collection was obtained directly from the sample that was washed and dried without further re-crystallization.

Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atoms on oxygen atoms of carboxylic acid groups were found in a difference map and refined with a riding model with O—H = 0.82 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A one-dimensional zigzag chain formed by intermolecular O—H…N hydrogen bonds. (Hydrogen bonds are indicated by dashed lines)

from 5645 reflections

1,3-Di-4-pyridylpropane-4,4'-oxydibenzoic acid (1/1)

Crystal data	
$C_{13}H_{14}N_2 \cdot C_{14}H_{10}O_5$	Z = 2
$M_r = 456.48$	$F_{000} = 480$
Triclinic, PT	$D_{\rm x} = 1.336 {\rm ~Mg~m}^{-3}$
Hall symbol: -P1	Melting point: not measured K
<i>a</i> = 6.8938 (3) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.5869 (6) Å	Cell parameters from 5645 refl
c = 14.9570 (9) Å	$\theta = 1.8 - 28.4^{\circ}$
$\alpha = 86.493 \ (4)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 81.157 \ (4)^{\circ}$	T = 298 (2) K
$\gamma = 74.016 \ (3)^{\circ}$	Block, colourless
$V = 1134.67 (10) \text{ Å}^3$	$0.47\times0.45\times0.45~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	5645 independent reflections
Radiation source: fine-focus sealed tube	2932 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
Detector resolution: 9.00cm pixels mm ⁻¹	$\theta_{\text{max}} = 28.4^{\circ}$
T = 298(2) K	$\theta_{\min} = 1.8^{\circ}$
ϕ and ω scans	$h = -8 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$k = -14 \rightarrow 15$
$T_{\min} = 0.957, \ T_{\max} = 0.962$	$l = -19 \rightarrow 16$
8404 measured reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.147$	$w = 1/[\sigma^2(F_o^2) + (0.0616P)^2 + 0.0668P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
5645 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
307 parameters	$\Delta \rho_{\rm min} = -0.27 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	-0.1086 (2)	0.38623 (14)	0.57527 (11)	0.0497 (4)
N2	0.6799 (2)	0.69499 (14)	0.97352 (11)	0.0497 (4)
C15	0.0705 (3)	0.38146 (18)	0.59963 (16)	0.0580 (6)
H15	0.1800	0.3156	0.5827	0.080*
C16	0.1014 (3)	0.46960 (19)	0.64881 (16)	0.0571 (6)
H16	0.2301	0.4623	0.6640	0.080*
C17	-0.0570 (3)	0.56910 (16)	0.67593 (13)	0.0427 (5)
C18	-0.2430 (3)	0.57321 (17)	0.64994 (14)	0.0488 (5)
H18	-0.3553	0.6379	0.6662	0.080*
C19	-0.2627 (3)	0.48237 (19)	0.60034 (15)	0.0527 (5)
H19	-0.3893	0.4879	0.5834	0.080*
C20	-0.0312 (3)	0.67052 (17)	0.72756 (14)	0.0508 (5)
H20A	-0.1531	0.6990	0.7709	0.080*
H20B	-0.0205	0.7362	0.6854	0.080*
C21	0.1517 (3)	0.63922 (18)	0.77781 (15)	0.0541 (5)
H21A	0.1416	0.5743	0.8209	0.080*
H21B	0.2747	0.6112	0.7350	0.080*
C22	0.1678 (3)	0.74500 (17)	0.82751 (15)	0.0538 (5)
H22A	0.0454	0.7708	0.8710	0.080*
H22B	0.1703	0.8106	0.7842	0.080*
C23	0.6401 (3)	0.60151 (18)	0.93963 (15)	0.0564 (6)
H23	0.7250	0.5252	0.9483	0.080*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C24	0.4788 (3)	0.61262 (17)	0.89228 (15)	0.0539 (6)
H24	0.4566	0.5445	0.8705	0.080*
C25	0.3504 (3)	0.72434 (17)	0.87710 (13)	0.0437 (5)
C26	0.3944 (3)	0.82112 (17)	0.91119 (15)	0.0504 (5)
H26	0.3140	0.8986	0.9022	0.080*
C27	0.5568 (3)	0.80294 (18)	0.95832 (15)	0.0528 (5)
H27	0.5821	0.8696	0.9808	0.080*
01	0.6084 (2)	-0.16655 (12)	0.27513 (10)	0.0580 (4)
O2	0.5302 (2)	0.29158 (14)	0.50942 (13)	0.0798 (6)
03	0.8616 (2)	0.20798 (13)	0.48596 (12)	0.0716 (5)
Н3	0.8631	0.2642	0.5163	0.080*
O4	-0.1236 (2)	-0.11337 (12)	0.04949 (11)	0.0666 (5)
05	-0.0307 (2)	-0.31076 (12)	0.07640 (11)	0.0603 (4)
Н5	-0.1219	-0.3094	0.0467	0.080*
C1	0.6118 (3)	-0.06807 (16)	0.32224 (13)	0.0440 (5)
C2	0.4410 (3)	0.01727 (18)	0.35955 (14)	0.0496 (5)
H2	0.3120	0.0137	0.3510	0.080*
C3	0.4625 (3)	0.10781 (17)	0.40961 (14)	0.0477 (5)
H3A	0.3471	0.1655	0.4346	0.080*
C4	0.6537 (3)	0.11418 (16)	0.42333 (13)	0.0412 (4)
C5	0.8235 (3)	0.02569 (18)	0.38713 (14)	0.0487 (5)
H5A	0.9524	0.0275	0.3972	0.080*
C6	0.8041 (3)	-0.06484 (17)	0.33646 (14)	0.0500 (5)
Н6	0.9190	-0.1232	0.3120	0.080*
C7	0.6739 (3)	0.21355 (17)	0.47726 (14)	0.0481 (5)
C8	0.4451 (3)	-0.16717 (17)	0.23154 (13)	0.0454 (5)
С9	0.3450 (3)	-0.07097 (17)	0.18192 (14)	0.0519 (5)
Н9	0.3782	0.0018	0.1802	0.080*
C10	0.1958 (3)	-0.08367 (16)	0.13509 (14)	0.0486 (5)
H10	0.1277	-0.0188	0.1019	0.080*
C11	0.1450 (3)	-0.19174 (16)	0.13651 (13)	0.0408 (4)
C12	0.2458 (3)	-0.28742 (16)	0.18693 (14)	0.0481 (5)
H12	0.2126	-0.3602	0.1889	0.080*
C13	0.3958 (3)	-0.27513 (17)	0.23433 (15)	0.0513 (5)
H13	0.4635	-0.3396	0.2681	0.080*
C14	-0.0170 (3)	-0.20004 (17)	0.08383 (13)	0.0442 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0480 (10)	0.0533 (10)	0.0517 (11)	-0.0151 (8)	-0.0135 (8)	-0.0097 (8)
N2	0.0498 (10)	0.0505 (10)	0.0547 (11)	-0.0163 (8)	-0.0186 (8)	-0.0058 (8)
C15	0.0486 (12)	0.0560 (13)	0.0700 (16)	-0.0095 (10)	-0.0119 (11)	-0.0195 (11)
C16	0.0407 (11)	0.0625 (13)	0.0725 (15)	-0.0109 (10)	-0.0191 (10)	-0.0214 (11)
C17	0.0419 (10)	0.0467 (11)	0.0425 (11)	-0.0126 (9)	-0.0128 (9)	-0.0054 (8)
C18	0.0422 (11)	0.0497 (11)	0.0563 (13)	-0.0094 (9)	-0.0166 (10)	-0.0059 (9)
C19	0.0462 (11)	0.0579 (13)	0.0600 (14)	-0.0157 (10)	-0.0210 (10)	-0.0052 (10)
C20	0.0483 (11)	0.0509 (12)	0.0578 (13)	-0.0129 (9)	-0.0184 (10)	-0.0124 (10)

C21	0.0516 (12)	0.0544 (12)	0.0625 (14)	-0.0151 (10)	-0.0207 (10)	-0.0132 (10)
C22	0.0558 (12)	0.0519 (12)	0.0594 (14)	-0.0136 (10)	-0.0236 (10)	-0.0101 (10)
C23	0.0604 (13)	0.0476 (12)	0.0682 (15)	-0.0155 (10)	-0.0284 (11)	-0.0020 (10)
C24	0.0617 (13)	0.0434 (11)	0.0655 (15)	-0.0189 (10)	-0.0251 (11)	-0.0083 (10)
C25	0.0470 (11)	0.0456 (11)	0.0423 (11)	-0.0156 (9)	-0.0111 (9)	-0.0052 (8)
C26	0.0489 (11)	0.0431 (11)	0.0625 (14)	-0.0116 (9)	-0.0165 (10)	-0.0099 (9)
C27	0.0516 (12)	0.0496 (12)	0.0635 (14)	-0.0171 (10)	-0.0155 (10)	-0.0157 (10)
01	0.0535 (8)	0.0512 (8)	0.0755 (11)	-0.0093 (6)	-0.0305 (7)	-0.0179 (7)
O2	0.0523 (9)	0.0721 (11)	0.1135 (15)	0.0026 (8)	-0.0246 (9)	-0.0481 (10)
O3	0.0488 (9)	0.0740 (10)	0.0991 (13)	-0.0148 (7)	-0.0181 (8)	-0.0448 (9)
O4	0.0742 (10)	0.0471 (8)	0.0893 (12)	-0.0147 (7)	-0.0498 (9)	0.0038 (8)
O5	0.0661 (9)	0.0437 (8)	0.0821 (11)	-0.0164 (7)	-0.0396 (8)	-0.0061 (7)
C1	0.0472 (11)	0.0451 (11)	0.0449 (12)	-0.0148 (9)	-0.0160 (9)	-0.0064 (8)
C2	0.0375 (10)	0.0591 (12)	0.0571 (13)	-0.0141 (9)	-0.0171 (9)	-0.0078 (10)
C3	0.0368 (10)	0.0536 (12)	0.0527 (13)	-0.0070 (9)	-0.0124 (9)	-0.0098 (9)
C4	0.0405 (10)	0.0450 (10)	0.0398 (11)	-0.0110 (8)	-0.0104 (8)	-0.0057 (8)
C5	0.0359 (10)	0.0578 (12)	0.0559 (13)	-0.0147 (9)	-0.0084 (9)	-0.0147 (10)
C6	0.0392 (10)	0.0552 (12)	0.0563 (13)	-0.0104 (9)	-0.0074 (9)	-0.0156 (10)
C7	0.0460 (11)	0.0496 (12)	0.0513 (13)	-0.0100 (10)	-0.0171 (10)	-0.0086 (9)
C8	0.0463 (11)	0.0472 (11)	0.0471 (12)	-0.0127 (9)	-0.0166 (9)	-0.0089 (9)
C9	0.0659 (13)	0.0433 (11)	0.0557 (13)	-0.0234 (10)	-0.0220 (11)	0.0014 (9)
C10	0.0596 (12)	0.0423 (11)	0.0493 (12)	-0.0155 (9)	-0.0212 (10)	0.0001 (9)
C11	0.0438 (10)	0.0393 (10)	0.0418 (11)	-0.0115 (8)	-0.0109 (9)	-0.0059 (8)
C12	0.0533 (11)	0.0383 (10)	0.0581 (13)	-0.0142 (9)	-0.0199 (10)	-0.0021 (9)
C13	0.0551 (12)	0.0412 (11)	0.0613 (14)	-0.0104 (9)	-0.0256 (10)	0.0009 (9)
C14	0.0453 (11)	0.0411 (11)	0.0484 (12)	-0.0112 (9)	-0.0118 (9)	-0.0071 (9)

Geometric parameters (Å, °)

N1—C15	1.326 (2)	O1—C1	1.385 (2)
N1—C19	1.337 (2)	O1—C8	1.387 (2)
N2—C27	1.333 (2)	O2—C7	1.202 (2)
N2—C23	1.334 (2)	O3—C7	1.304 (2)
C15—C16	1.375 (3)	O3—H3	0.8200
С15—Н15	0.9300	O4—C14	1.208 (2)
C16—C17	1.383 (3)	O5—C14	1.325 (2)
С16—Н16	0.9300	О5—Н5	0.8200
C17—C18	1.384 (2)	C1—C2	1.379 (3)
C17—C20	1.509 (2)	C1—C6	1.385 (2)
C18—C19	1.372 (3)	C2—C3	1.378 (3)
C18—H18	0.9300	С2—Н2	0.9300
С19—Н19	0.9300	C3—C4	1.387 (2)
C20—C21	1.514 (3)	С3—НЗА	0.9300
C20—H20A	0.9700	C4—C5	1.388 (2)
C20—H20B	0.9700	C4—C7	1.494 (2)
C21—C22	1.510 (3)	С5—С6	1.378 (2)
C21—H21A	0.9700	C5—H5A	0.9300
C21—H21B	0.9700	С6—Н6	0.9300
C22—C25	1.514 (3)	C8—C9	1.379 (3)

C22—H22A	0.9700	C8—C13	1.380 (3)
C22—H22B	0.9700	C9—C10	1.374 (3)
C23—C24	1.381 (3)	С9—Н9	0.9300
С23—Н23	0.9300	C10—C11	1.388 (2)
C24—C25	1.380 (3)	C10—H10	0.9300
C24—H24	0.9300	C11—C12	1.384 (3)
C25—C26	1.384 (2)	C11—C14	1.489 (2)
C26—C27	1.374 (3)	C12—C13	1.382 (3)
С26—Н26	0.9300	C12—H12	0.9300
С27—Н27	0.9300	С13—Н13	0.9300
C15—N1—C19	117.07 (16)	N2—C27—H27	118.2
C27—N2—C23	116.59 (16)	С26—С27—Н27	118.2
N1—C15—C16	122.91 (18)	C1—O1—C8	122.02 (14)
N1—C15—H15	118.5	С7—О3—Н3	109.5
C16—C15—H15	118.5	С14—О5—Н5	109.5
C15—C16—C17	120.72 (17)	C2—C1—C6	120.44 (16)
С15—С16—Н16	119.6	C2—C1—O1	124.67 (16)
С17—С16—Н16	119.6	C6—C1—O1	114.70 (16)
C16—C17—C18	115.85 (17)	C3—C2—C1	119.62 (17)
C16—C17—C20	123.19 (16)	С3—С2—Н2	120.2
C18—C17—C20	120.92 (16)	С1—С2—Н2	120.2
C19—C18—C17	120.35 (17)	C2—C3—C4	120.95 (17)
C19—C18—H18	119.8	С2—С3—НЗА	119.5
C17—C18—H18	119.8	С4—С3—НЗА	119.5
N1-C19-C18	123.10 (17)	C3—C4—C5	118.54 (16)
N1—C19—H19	118.4	C3—C4—C7	120.15 (16)
С18—С19—Н19	118.4	C5—C4—C7	121.30 (16)
C17—C20—C21	115.27 (16)	C6—C5—C4	121.02 (16)
C17—C20—H20A	108.5	С6—С5—Н5А	119.5
C21—C20—H20A	108.5	С4—С5—Н5А	119.5
С17—С20—Н20В	108.5	C5—C6—C1	119.39 (17)
C21—C20—H20B	108.5	С5—С6—Н6	120.3
H20A—C20—H20B	107.5	С1—С6—Н6	120.3
C22—C21—C20	112.25 (16)	02—C7—O3	123.16 (17)
C22—C21—H21A	109.2	O2—C7—C4	122.99 (17)
C20—C21—H21A	109.2	O3—C7—C4	113.85 (16)
C22—C21—H21B	109.2	C9—C8—C13	120.40 (17)
C20-C21-H21B	109.2	C9—C8—O1	123.73 (17)
H21A—C21—H21B	107.9	C13—C8—O1	115.68 (17)
C21—C22—C25	116.41 (17)	C10-C9-C8	119.34 (17)
C21—C22—H22A	108.2	С10—С9—Н9	120.3
C25—C22—H22A	108.2	С8—С9—Н9	120.3
C21—C22—H22B	108.2	C9—C10—C11	121.15 (18)
С25—С22—Н22В	108.2	С9—С10—Н10	119.4
H22A—C22—H22B	107.3	C11-C10-H10	119.4
N2—C23—C24	123.12 (18)	C12-C11-C10	118.96 (17)
N2—C23—H23	118.4	C12-C11-C14	122.47 (17)
C24—C23—H23	118.4	C10-C11-C14	118.57 (17)
C25—C24—C23	120.29 (17)	C13—C12—C11	120.16 (17)

C25—C24—H24 C23—C24—H24	119.9 119.9	C13—C12—H12 C11—C12—H12	119.9 119.9
C24—C25—C26 C24—C25—C22	116.32 (17) 124 00 (16)	C8—C13—C12 C8—C13—H13	119.99 (18) 120 0
C26—C25—C22	119.67 (17)	C12—C13—H13	120.0
C27—C26—C25	120.08 (18) 120.0	04C14O5	123.14 (17)
C25—C26—H26 N2—C27—C26	120.0 123 58 (16)	05-C14-C11	114.15 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O3—H3···N1 ⁱ	0.82	1.78	2.598 (2)	174.0
O5—H5···N2 ⁱⁱ	0.82	1.87	2.685 (2)	176.9

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*-1, *z*-1.

Fig. 1

